Lithium-ion Insertion/Extraction Reaction with λ -MnO $_2$ in the Aqueous Phase

Kenta 00I,* Yoshitaka MIYAI, Shunsaku KATOH,
Hiroshi MAEDA,† and Mitsuo ABE ††

Government Industrial Research Institute, Shikoku,
2-3-3 Hananomiya-cho, Takamatsu 761
† Faculty of Science, Nagoya University, Nagoya 464
††Faculty of Science, Tokyo Institute of Technology, Tokyo 152

The topotactic insertion of Li⁺ in $\lambda\text{-MnO}_2$ involved an evolution of oxygen and a reduction of Mn(IV) to Mn(III) in a (LiCl + LiOH) solution. The major reaction could be represented as $\lambda\text{-MnO}_2$ + xLiOH \longrightarrow Li_xMnO₂ + (x/2)H₂O + (x/4)O₂, where x denotes moles of inserted Li⁺ per mole of $\lambda\text{-MnO}_2$. The extraction of the inserted Li⁺ was studied by using a solution containing either an acid(HCl) or an oxidizing agent(Br₂, K₂S₂O₈).

Recently, spinel-type manganese oxide(λ -MnO $_2$) has been prepared by extracting Li⁺ from LiMn $_2$ O $_4$ with acid¹⁾ or an oxidizing agent.²⁾ Hunter proposed a disproportionation mechanism for the topotactic extraction of Li⁺ (2LiMn $_2$ O $_4$ + 4H⁺ \longrightarrow 3 λ -MnO $_2$ + 2Li⁺ + Mn²⁺ + 2H $_2$ O).¹⁾ Xiang-mu and Clearfield proposed an ion-exchange mechanism (LiMn $_2$ O $_4$ + H⁺ \longrightarrow HMn $_2$ O $_4$ + Li⁺).³⁾ We have studied the insertion reactions of alkali metal ions with λ -MnO $_2$ in the aqueous phase.⁴⁾ The insertion reaction could scarcely proceed in a solution of each alkali metal chloride except Li⁺ ions, the insertion of which took place effectively only in the presence of OH⁻ ions. We explained the selective insertion of Li⁺ based on the "ion-sieve" effect of the tetrahedral vacant (or protonated) sites of the cubic closed-packed oxygen framework. The pH titration suggested a H⁺/Li⁺ ion-exchange mechanism for the Li⁺ insertion. However, we have found the evolution of oxygen and the reduction of Mn(IV) to Mn(III) during the Li⁺ insertion. In the present report, we will propose a redox mechanism for the major reaction of the topotactic insertion of Li⁺ in alkaline solutions.

 $\lambda\text{-MnO}_2$ was prepared by the acid treatment of $\text{LiMn}_2\text{O}_4.^{4}$ The lithium content of the product($\lambda\text{-MnO}_2$) was 0.29 mmol·g⁻¹, indicating that more than 92% of the lithium was extracted by the acid treatment. Metal ion insertion was carried out by mixing $\lambda\text{-MnO}_2$ with a (MCl + MOH, M= Li⁺, K⁺) solution at 25 °C. The concentrations of metal ions(Li⁺, K⁺, dissolved Mn) in the supernatant were determined by atomic absorption spectrometry and the OH⁻ concentration by titration with acid. The metal ion uptakes by $\lambda\text{-MnO}_2$ were calculated from the decreased metal ion concentrations and the amount of OH⁻ consumed from the decreased OH⁻ concentration. The evolution of gas was measured volumetrically in

990 Chemistry Letters, 1988

a helium gas atmosphere at 25 \pm 0.5 °C. The gas composition was analyzed by gas chromatography with ZSM5 packing. Extraction of Li⁺ was carried out by mixing the Li⁺-inserted λ -MnO $_2$ with a solution containing 0.2-M HCl(1 M = 1 mol·dm⁻³), 0.1-M Br $_2$, or 0.2-M K $_2$ S $_2$ O $_8$ at 25 °C.

The MnO_2 substances were analyzed for available oxygen, as well as Mn , Li^+ , K^+ , Cl^- , and water contents. The available oxygen was determined by the standard oxalic acid method. After dissolving manganese oxide with a mixed solution of acid and $\mathrm{H}_2\mathrm{O}_2$, the Li^+ , K^+ , and Mn contents were determined by atomic absorption spectrometry and the Cl^- content by ion chromatography. The water content was calculated from the weight loss by heating at 400 °C in air. The chemical composition was calculated according to a method described in the literature. A powdered X-ray diffraction analysis was carried out.

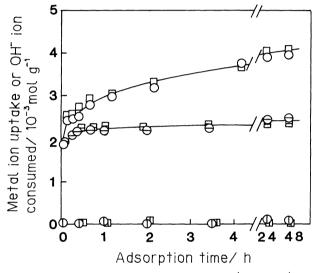


Fig. 1.

Time courses of metal ion insertion in λ -MnO₂ at 25 °C.

Circles and squares represent the amounts of metal ions inserted and OH⁻ consumed, respectively. λ -MnO₂: 3.0 g, volume of soln.: 300 cm³.

O \Box : (0.1-M LiCl + 0.050-M LiOH) \ominus \boxminus : (0.1-M LiCl + 0.025-M LiOH)

 Φ \square : (0.1-M KCl + 0.025-M KOH)

The time dependences of Li⁺ and K⁺ insertions at 25 °C are illustrated in Fig. 1. In the case of a 0.025-M LiOH system, the insertion rate was relatively high; only 60 minutes was sufficient to reach 90% of the equilibrium uptake. In the case of a 0.050-M LiOH system, the insertion reaction was rapid up to a Li⁺ uptake of 2.5 mmol·g⁻¹, followed by a slow insertion phase. The amount of consumed OH⁻ was nearly equal to that of the inserted Li⁺ over the insertion process. Supernatant solutions showed a slightly purplish color due to the presence of Mn(VII) ions. However, the concentration of Mn was less than 5 x 10⁻⁴ M. The equilibrium K⁺-uptake was very small (less than 0.2 mmol·g⁻¹) compared to the Li⁺-uptake. The evolution of O_2 gas was observed in the case of Li⁺ insertion (Fig. 2). The evolved amounts of the gas were found to be 0.57 and 0.84 mmol per gram of original λ -MnO₂ for 0.025-M LiOH and 0.050-M LiOH systems, respectively.

The X-ray diffraction analysis indicated that the crystal system of the metal ion-inserted sample was identical with that of $\lambda\text{-MnO}_2$. The lattice constant increased with the amount of inserted Li⁺(Table 1). A chemical analysis showed that most of manganese in $\lambda\text{-MnO}_2$ is in a tetravalent state. The Mn:O ratio scarcely changed through the insertion of Li⁺. This indicates a reduction of an equivalent amount of manganese from Mn(IV) to Mn(III) by Li⁺ insertion. The Cl⁻ contents were less than 0.01 mmol·g⁻¹ for all samples.

Chemistry Letters, 1988 991

Sample	Chemical composition	Lattice constant(a_0)/ nm^f)
λ -MnO ₂	Li _{0.03} Mn0 _{2.0} (H ₂ 0) _{0.05}	0.800
λ -MnO ₂ (Li-I) ^{a)}	Li _{0.25} MnO _{2.0} (H ₂ 0) _{0.03}	0.811
$\lambda - Mn0_2(Li-II)^b)$	Li _{0.39} MnO _{2.0} (H ₂ 0) _{0.02}	0.820
$\lambda - MnO_2(K)^{c}$	Lio.04 ^K 0.005 ^{MnO} 2.0 ^(H2O) 0.	0.800
$\lambda - MnO_2(Li - Br_2)^d$	Li _{0.07} MnO _{2.0} (H ₂ 0) _{0.05}	0.802
λ -MnO ₂ (Li-HCl) ^{e)}	Li _{0.07} Mn0 _{2.0} (H ₂ 0) _{0.04}	0.802

Table 1. Chemical Compositions and Lattice Constants

- a) $\lambda-MnO_2$ was treated with a (0.1-M LiCl + 0.025-M LiOH) solution for 1 d.
- b) $\lambda-\text{MnO}_2$ was treated with a (0.1-M LiCl + 0.050-M LiOH) solution for 1 d.
- c) $\lambda\text{-MnO}_2$ was treated with a (0.1-M KCl + 0.025-M KOH) solution for 1 d.
- d) $\lambda-MnO_2(\text{Li-II})$ was treated with a 0.1-M Br₂ solution for 2 d.
- e) $\lambda-MnO_2(\text{Li-II})$ was treated with a 0.2-M HCl solution for 2 d.
- f) Lattice constant calculated from the X-ray diffraction pattern.

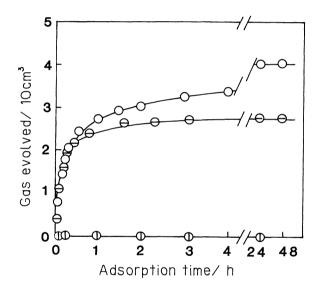


Fig. 2.

Time courses of gas evolution during the insertion of metal ions.

Suspension: 2 g λ -MnO₂ in 180 cm³ H₂O Volume of metal ion solution: 20 cm³

O: (1-M LiCl + 0.50-M LiOH)

⊖: (1-M LiCl + 0.25-M LiOH)

 Φ : (1-M KCl + 0.25-M KOH)

As a result of the above chemical analysis, the major reaction of the Li⁺ insertion could be represented by the following chemical reaction using symbol x, moles of inserted Li⁺ per mole of λ -MnO₂ (0 < x < 0.5):

$$MnO_2 + xLiOH \longrightarrow Li_xMnO_2 + (x/2)H_2O + (x/4)O_2.$$
 (1)

The amounts of evolved O_2 (0.57 and 0.84 mmol·g⁻¹ for 0.025-M LiOH and 0.050-M LiOH systems, respectively) were about 85% of the expected values, 0.63 and 1.0 mmol·g⁻¹, respectively. The smaller amounts of the O_2 evolution are probably due to the presence of minor reaction of an ion-exchange adsorption. Equation 1 indicates that the Li⁺ insertion consumes an equivalent amount of OH⁻ ions. This is the reason why the Li⁺ insertion reaction could apparently be represented as the mechanism of an H⁺/Li⁺ ion exchange in the pH titration study in which only pH dependence of the Li⁺ uptake by λ -MnO₂ was measured.⁴⁾ Equation 1 also shows that

992 Chemistry Letters, 1988

the Li ⁺ insertion in $\lambda\text{-MnO}_2$ proceeds through a unique reaction which involves the reduction of Mn(IV) and the oxidation of OH ⁻ to O₂. This unique reaction can be well explained on the basis of the concept of the one-phase solid redox system proposed by Kozawa et al. ⁷⁾ Manganese oxide has the characteristics that small ions(H ⁺, Li ⁺) and electrons(or positive charge) can move freely within the oxide structure to form a one-phase solid redox system. Therefore, the insertion reaction can be divided into two parts: 1)the insertion of Li ⁺ into a tetrahedral vacant site of the ccp oxygen framework of $\lambda\text{-MnO}_2$, accompaning a reduction of Mn(IV), and 2)the migration of excess positive-charge to the surface of $\lambda\text{-MnO}_2$ powder followed by the oxidization of OH in the aqueous phase.

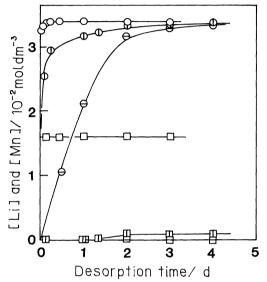


Fig. 3.
Time courses of Li⁺ extraction at 25 °C.
Circles and squares correspond to the concentrations of Li⁺ and Mn,
respectively.

Sample: λ -MnO₂(Li-II), 1 g, volume of soln.: 100 cm³

O \square : 0.2-M HCl, \square \square : 0.1-M Br₂, \square \square : 0.2-M K₂S₂O₈.

The rate of Li⁺ extraction was rapid in a HCl solution: about 20 minutes was sufficient to reach equilibrium(Fig. 3). A dissolution of Mn was observed markedly in the HCl solution. The mole ratio of dissolved Mn to eluted Li⁺ was 0.47, which is close to the expected ratio(0.5) in a Li⁺-extraction reaction from $\operatorname{LiMn_2O_4}^{-1}$. In the case of oxidizing agents, the extraction of Li⁺ could proceed with a slight dissolution of Mn. Samples after the extraction reaction maintained the same spinel structure as the original λ -MnO₂. A chemical analysis showed that most of the manganese was in a state of Mn(IV) after extraction (Table 1). These results suggest that the insertion/extraction of Li⁺ proceeds reversibly in cooperation with a reduction/oxidation of manganese.

References

- 1) J. C. Hunter, J. Solid State Chem., 39, 142 (1981).
- 2) A. Mosbah, A. Verbaere, and M. Tournoux, Mat. Res. Bull., 18, 1375 (1983).
- 3) S. Xiang-mu and A. Clearfield, J. Solid State Chem., <u>64</u>, 270 (1986).
- 4) K. Ooi, Y. Miyai, and S. Katoh, Solv. Extr. Ion Exch., 5, 561 (1987).
- 5) Japan Industrial Standard (JIS), M8233 (1969).
- 6) P. Ruetschi, J. Electrochem. Soc., <u>131</u>, 2737 (1984).
- 7) A. Kozawa and R. A. Powers, J. Electrochem. Soc., 113, 870 (1966).

(Received January 16, 1988)